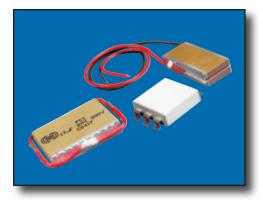


U.S. Manufacturer of High-Rel Ceramic Capacitors Since 1980

CATALOG 3500 - REV. P - SEPTEMBER 2024

HIGH TEMPERATURE CERAMIC CAPACITORS 150°C · 175°C · 200°C · 225°C · 250°C · 500°C



SURFACE MOUNT CHIPS SMPS STACKED RADIAL LEADED

PRESIDIO COMPONENTS, INC.

The industry leader for high temperature ceramic capacitors. We have an active development program for material, packaging and testing from 200°C to above 500°C.

Presidio Components has been an industry leader in the manufacture of ceramic capacitors since 1980. We are dedicated to excellence in manufacturing, process control and customer service. All products are manufactured and tested in our state-of-the-art, 75,000 square foot facility in San Diego, California, allowing for immediate response to your business needs. We have numerous patents, and hundreds of years of combined engineering experience, and we can formulate the right product for your application. At Presidio Components we work hard to build positive, long term relationships with our customers and we will go the extra distance to ensure customer satisfaction.

PRESIDIO PRODUCT LINES

If you have a demanding application, please call the factory. We are easy to reach. Although Presidio Components maintains more than 100 million commercial and military parts in inventory, we can help with multitudes of intermediate sizes, voltages, tolerances, termination finishes, lead-frame styles and more. Some of our specialties include ceramic capacitors for high temperatures, cryogenic temperatures, and pulse discharge applications, as well as high Q dielectric, negative and positive temperature characteristic and piezoelectric ceramic formulations. We also have a series of ceramic capacitors for microwave and RF applications, including wirebondable single layer, wirebondable bypass, and SMD broadband DC blocking caps.

For more information about Presidio's products or the name of your local sales representative visit our website at:

www.presidiocomponents.com

DIVERSE MARKETS

Presidio Components provides ceramic capacitors for high quality commercial, downhole oil, military, and space applications. Our customers manufacture products such as oil exploration drillbits, aircraft, missile guidance systems, switch mode power supplies, phased array radar, high frequency transponders and receivers, and ring laser gyros.

QPL PRODUCTS & DSCC APPROVED TEST LAB

Presidio Components was initially qualified to MIL-PRF-55681 in 1984. Since then we have upgraded our processing line to obtain the highest established reliability rating of "S" level. We are also qualified on two additional space level specifications, MIL-PRF-123 and MIL-PRF-49470 "T" level. And, Presidio Components is proud to be the first QPL supplier to MIL-PRF-49467, the high voltage ceramic capacitor specification. All QPL testing per MIL-STD-202 is done on site at our DSCC approved test lab. For a list of environmental test capability, consult the factory.

TELL US ABOUT YOUR APPLICATION

Use this catalog as a guideline only. The capacitor sizes noted here are only a few of the total we have available...the most common ones. Presidio Components is tooled to produce many additional sizes and styles.

We regularly design new products to meet specific applications needed by our customers, including special voltage requirements, optimized shapes, new types of terminations, and even particular tests and screening.

PARAMETERS TO CONSIDER WHEN SELECTING THE BEST CERAMIC CAPACITORS

To provide you with the best parts possible, we'd like to work with your engineering team early in the design process. Some of the key considerations we can help you address include:

- 1. Maximum working temperature requirements
- 2. Maximum working voltage at maximum temperature
- 3. Life expectancy of parts at maximum temperature
- 4. Capacitance value required at maximum temperature
- 5. Maximum height / length / width allowed
- 6. Type of solder / attachment to be used
- 7. DC or AC voltage and if AC, frequency needed
- 8. Lead style requirements for stacks
- RoHS Compliancy Determine if RoHS parts are required
- 10. Quantity required and when the parts are needed

Our engineering team looks forward to hearing from you.

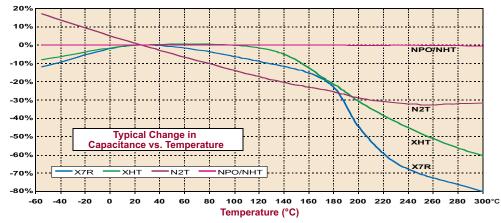
Give us a call at (858) 578-9390 or email us at info@presidiocomponents.com.

TABLE OF CONTENTS

High Temperature Ceramic Capacitors Dielectric Characteristics	4
High Temperature Ceramic Chip Capacitors (HT)	6
High Temperature High Voltage Chip Capacitors (HT)	8
High Temperature Stacked Capacitors (HTS) Soldering Recommendations	9
High Temperature SMPS Stacked Capacitors (HTS)10	0
High Temperature High Voltage Stacked Capacitors (HTS)12	2
High Temperature High Voltage Radial Leaded Capacitors (RT)	3
High Temperature Wire Bondable Vertical Layer Capacitors (HTVL)	4
Design-In Codes	5
Presidio Product Lines	6

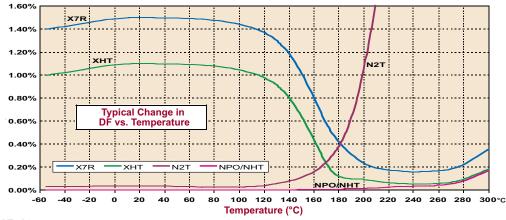
HIGH TEMPERATURE CERAMIC CAPACITORS

Consult Factory for Requirements Above 250°C

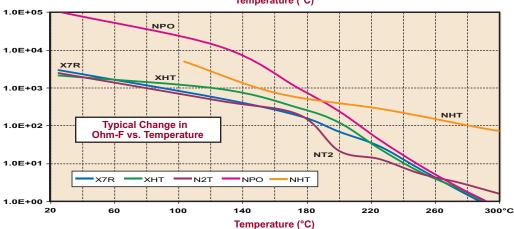

DIELECTRIC CHARACTERISTICS

* Contact factory regarding NPQ & N2T dielectric

CHARACTERISTICS	NPO/NHT/NPQ/N2T* DIELECTRIC	XHT DIELECTRIC	X7R DIELECTRIC
OPERATING TEMPERATURE RANGE	-55°C to 500°C+ N2T (125°C Max)	-55°C to 250°C+	-55°C to 250°C+
TEMPERATURE COEFFICIENT UP TO 200°C	NPO/NHT/NPQ: 0 ± 30 ppm/°C N2T: -55°C to 25°C: -3330 ppm/°C max. change, no min. 25°C to 125°C: -2700 ppm/°C max. change, no min.	+15 - 32% ∆ °C Typical	+15 - 45% Δ °C Typical
INSULATION @ 25°C RESISTANCE @ 200°C	>100 G Ω or >1000 Ω F >1 G Ω or >10 Ω F	>100 G Ω or >1000 Ω F >1 G Ω or >10 Ω F	>100 GΩ or >1000 ΩF >1 GΩ or >10 ΩF
DIELECTRIC WITHSTANDING VOLTAGE	DWV tested at 250% rated voltage except 500V rated parts are testedat 150% rated voltage.	DWV tested at 250% rated voltage except 500V rated parts are tested at 150% rated voltage.	DWV tested at 250% rated voltage except 500V rated parts are tested at 150% rated voltage.
DISSIPATION FACTOR @ 25°C VOLTAGE RATING:	NPO/NHT/NPQ/N2T* DIELECTRIC	XHT DIELECTRIC	X7R DIELECTRIC
10 VDC	.15%	5.0%	7.5%
16/25 VDC	.15%	3.5%	5.0%
50 VDC	.15%	2.5%	3.5%
>50 VDC	.15%	2.5%	2.5%


TEMPERATURE COEFFICIENT

Tested at 1VACRMS 1KHz
Capacitance Change


DISSIPATION FACTOR

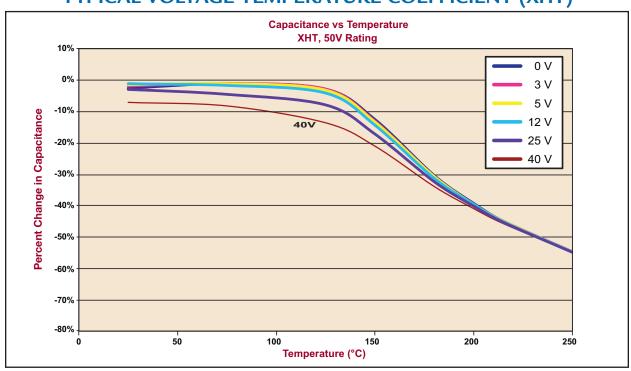
Percentage Change

INSULATION RESISTANCE

Ohm-F



HIGH TEMPERATURE CERAMIC CAPACITORS


Consult Factory for Requirements Above 250°C

DIELECTRIC CHARACTERISTICS

TYPICAL VOLTAGE TEMPERATURE COEFFICIENT (X7R)

TYPICAL VOLTAGE TEMPERATURE COEFFICIENT (XHT)

HIGH TEMPERATURE CERAMIC CHIP CAPACITORS (HT)

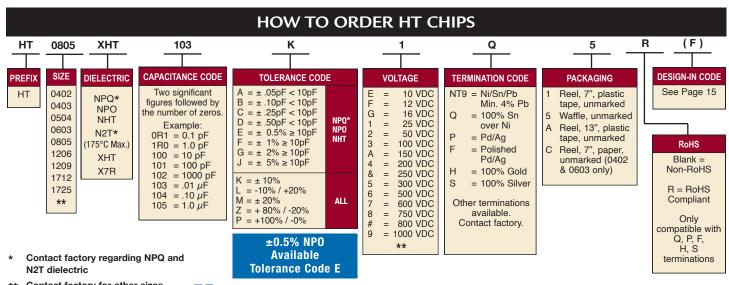
HIGH TEMPERATURE DESIGNATION - CODE "HT"

This code signifies that the parts are designed for high temperature use and have followed the Group A testing program of the "HR" type listed in our catalog. Temperatures of 250°C are acceptable for these capacitors, in terms of the inherent capability of the ceramic and depending on the voltage applied. Presidio's HT product line features many proprietary design elements, in both materials and construction, that have been shown to work well in the downhole environments. Consult factory for higher temperature requirements.

NON-MAGNETIC PARTS

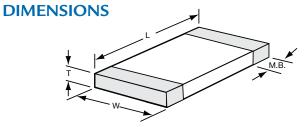
All of our capacitors can be made "Non-Magnetic" by simply selecting the correct termination (P, F or H).

ROHS COMPLIANCE – CODE "R"


This code signifies that the parts are made in compliance with the RoHS Directive.

MAIN SOLDERING/TERMINATION OPTIONS (Contact factory for other options)

Code	Description	Attachment Method Recommended Max. Temp.	Summary
NT9	Standard Ni + 90% Sn 10% Pb	Sn63 or HMP (150°C) (200°C)	Traditional 90/10 SnPb termination.
Q	Ni + 100% Sn Matte Finish	Sn96 (180°C) DO NOT USE HMP	Standard Pure Tin over Ni termination for high temperature. Sizes 1712 and above are not compatible for all soldering processes. Customers need to run their own tests and qualifications on these parts.
Р	Pd/Ag Termination	HMP (250°C) or Epoxy	Standard Pd/Ag termination. (NON-MAGNETIC)
F	Polished Pd/Ag Termination	HMP (250°C) or Epoxy or Wirebond	Standard Pd/Ag termination polished for easier soldering or for wirebonding. (NON-MAGNETIC)
н	Thick Film Gold	Wirebond or Solder or Epoxy (500°C+)	Pure Gold termination. (NON-MAGNETIC)
S	Thick Film Silver	Solder or Epoxy – Silver Sintering (300°C)	Pure Silver termination. (NON-MAGNETIC)


Other terminations available. Contact factory.

Note: Presidio does not recommend wave soldering. Careful qualification for any wave solder process is recommended.

HIGH TEMPERATURE CERAMIC CHIP CAPACITORS (HT)

Consult Factory for Requirements Above 250°C

VOLTAGE DERATING

For high operating temperatures follow your voltage derating rules or contact Presidio for assistance.

Example: At 175°C a 50V part is not to be used at full rated voltage.

AVAILABLE CAPACITANCE VALUES

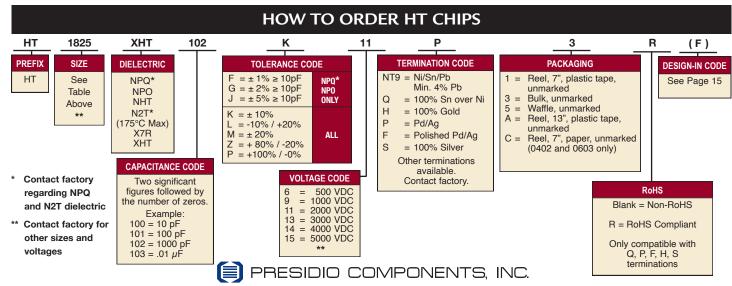
SIZE**	L Inches	W Inches	Thickness Max (T)***	Metalization Band (M.B.)	WVDC**			CTRIC* Capacitance)									
OIZE	(mm)	(mm)	Inches (mm)	Inches (mm)		NPO	NHT***	XHT	X7R								
					10V	390 pF	390 pF	6800 pF	0.012 μF								
	0.040 (1.02)	0.020 (0.51)	0.025	0.004 (0.10) min. band	25V	120 pF	120 pF	2200 pF	4700 pF								
0402	± 0.004 (0.10)	± 0.004 (0.10)	(0.63)	0.015 (0.38)	50V	100 pF	100 pF	1800 pF	3900 pF								
	, ,	, ,		min. space	100V	39 pF	39 pF	680 pF	1200 pF								
				2 22 4 (2 4 2)	10V	1200 pF	1200 pF	0.020 µF	0.047 μF								
0.400	0.040 (1.02)	0.030 (0.76)	0.030	0.004 (0.10) min. band	25V	390 pF	390 pF	6800 pF	0.015 μF								
0403	0.010 (0.25)	0.010 (0.25)	(0.76)	0.015 (0.38) min. space	50V	330 pF	330 pF	5600 pF	0.012 μF								
				Timi. Space	100V	68 pF	68 pF	1000 pF	2200 pF								
				0.005 (0.10)	10V	2700 pF	2700 pF	0.068 μF	0.12 μF								
0504	0.050 (1.27)	0.040 (1.02)	0.040	0.005 (0.13) min. band	25V	1500 pF	1500 pF	0.027 µF	0.047 μF								
0504	0.010 (0.25)	0.010 (0.25)	(1.02)	0.015 (0.38) min. space	50V	1200 pF	1200 pF	0.020 µF	0.039 µF								
				Timi. opacc	100V	180 pF	180 pF	2700 pF	6800 pF								
				0.005 (0.12)	10V	2200 pF	2200 pF	0.039 µF	0.10 μF								
0603	0.063 (1.60)	0.032 (0.81)	0.035	0.005 (0.13) min. band	25V	680 pF	680 pF	0.015 μF	0.10 μF								
0003	0.006 (0.15)	0.006 (0.15)	(0.89)	0.025 (0.64) min. space	50V	560 pF	560 pF	0.010 µF	0.022 µF								
				spass	100V	100 pF	100 pF	1800 pF	3300 pF								
					10V	4700 pF	4700 pF	0.1 μF	0.22 µF								
0805	0.080 (2.03)	0.050 (1.27)	0.055	0.020 (0.51)	25V	2700 pF	2700 pF	0.047 µF	0.10 μF								
0005	0.010 (0.25)	0.010 (0.25)	(1.40)	0.010 (0.25)	50V	2200 pF	2200 pF	0.039 μF	0.10 μF								
					100V	560 pF	560 pF	8200 pF	0.022 μF								
													10V	0.012 μF	0.012 μF	0.25 μF	0.56 μF
	0.126 (3.20)	0.063 (1.60)	0.005	0.020 (0.51)	25V	6800 pF	6800 pF	0.15 μF	0.27 μF								
1206	± 0.008 (0.20)	± 0.008 (0.20)	0.065 (1.65)	± 0.010 (0.25)	50V	5600 pF	5600 pF	0.1 µF	0.22 μF								
	0.008 (0.20)	0.008 (0.20)		0.010 (0.23)	100V	1500 pF	1500 pF	0.027 µF	0.068 μF								
					200V	820 pF	820 pF	0.012 µF	0.027 μF								
					10V	0.018 μF	0.018 μF	0.39 µF	1.0 µF								
	0.125 (3.18)	0.095 (2.41)	0.065	0.020 (0.51)	25V	0.010 μF	0.010 μF	0.22 µF	0.47 μF								
1209	± 0.010 (0.25)	± 0.010 (0.25)	(1.65)	± 0.010 (0.25)	50V	0.010 μF	0.010 μF	0.18 μF	0.39 μF								
	0.010 (0.20)	0.010 (0.20)		0.010 (0.20)	100V	3900 pF	3900 pF	0.068 μF	0.15 μF								
					200V	1800 pF	1800 pF	0.033 μF	0.068 μF								
					10V	0.039 µF	0.039 μF	0.82 μF	1.8 µF								
	0.175 (4.45)	0.125 (3.18)	0.065	0.020 (0.51)	25V	0.022 μF	0.022 µF	0.47 µF	1.0 µF								
1712	± 0.015 (0.38)	± 0.010 (0.25)	0.065 (1.65)	0.010 (0.25)	50V	0.015 μF	0.015 μF	0.27 μF	1.0 μF								
	(-123)	(3.23)		(5.25)	100V	6800 pF	6800 pF	0.12 μF	0.27 μF								
					200V	3300 pF	3300 pF	0.056 μF	0.12 μF								
					10V	0.082 μF	0.082 μF	2.0 µF	3.9 µF								
	0.175 (4.45)	0.250 (6.35)	0.065	0.020 (0.51)	25V	0.056 μF	0.056 μF	1.2 µF	2.2 µF								
1725	0.015 (0.38)	0.018 (0.46)	(1.65)	0.010 (0.25)	50V	0.039 µF	0.039 μF	0.82 μF	1.8 µF								
	` ′	0.018 (0.46)	(1.65)	,	100V	0.018 µF	0.018 μF	0.33 μF	0.68 µF								
					200V	8200 pF	8200 pF	0.12 µF	0.27 μF								

^{*} Contact factory regarding NPQ and N2T dielectric.

^{**} Contact factory for other voltages, sizes or special requirements.

^{***} NHT Max (T) equals Max (W)

HIGH TEMPERATURE HIGH VOLTAGE CHIP CAPACITORS (HT)


NPO, NHT and XHT DIELECTRIC

Size	L Inches	W Inches	Thickness Max (T)***	Metalization Band (M.B.)	WVDC**	[(Maxi	DIELECTR mum Capac	IC :itance)													
	(mm)	(mm)	Inches (mm)	Inches (mm)		NPO	NHT***	XHT													
1209	0.125 (3.18)	0.095 (2.41)	0.080	0.020 (0.51)	500V	2700pF	2700pF	0.01µF													
1209	± 0.010 (0.25)	± 0.010 (0.25)	(2.03)	± 0.010 (0.25)	1000V	390pF	390pF	1800pF													
	0.150 (3.81)	0.140 (2.56)		0.000 (0.51)	500V	3900pF	3900pF	0.047µF													
1514	0.150 (3.61) ±	0.140 (3.56) ±	0.140	0.020 (0.51) ±	1000V	1800pF	1800pF	0.018µF													
1514	0.010 (0.25)	0.010 (0.25)	(3.56)	0.010 (0.25)	2000V	390pF	390pF	3300pF													
	` ′	, ,		, ,	3000V	150pF	150pF	1500pF													
	0.400 (4.57)	0.405 (0.40)		0.000 (0.54)	500V	6800pF	6800pF	0.047µF													
1812	0.180 (4.57) ±	0.125 (3.18) ±	0.120	0.020 (0.51)	1000V	2200pF	2200pF	0.015µF													
1012	0.020 (0.51)	0.010 (0.25)	(3.05)	0.010 (0.25)	2000V	270pF	270pF	1800pF													
	` ,	,		,	3000V	120pF	120pF	390pF													
	0.400.(4.55)	0.050 (0.05)		0.000 (0.54)	500V	0.012µF	0.012μF	0.15µF													
1825	0.180 (4.57) ±	0.250 (6.35)	0.160	0.020 (0.51) ±	1000V	5600pF	5600pF	0.027µF													
1825	0.020 (0.51)	0.018 (0.46)	(4.06)	0.010 (0.25)	2000V	1000pF	1000pF	6800pF													
	, ,	(3 3)			3000V	470pF	470pF	1800pF													
	0.400.44.00	0.400(4.55)		0.000 (0.54)	500V	8200pF	8200pF	0.082µF													
1918	0.190 (4.83) ±	0.180 (4.57) ±	0.150 (3.81) 0.020 (0.51) ± 0.010 (0.25)	0.150	0.150				I I		I I	I I		I I			` ′	1000V	3900pF	3900pF	0.022µF
1910	0.013 (0.33)	0.013 (0.33)		2000V	820pF	820pF	4700pF														
	` ,	,		,	3000V	330pF	330pF	1800pF													
	0.000 (5.04)	0.050 (0.05)		0.000 (0.54)	500V	0.015µF	0.015μF	0.27µF													
2225	0.230 (5.84) ±	0.250 (6.35) ±	0.200	0.020 (0.51) ±	1000V	6800pF	6800pF	0.068µF													
2225	0.020 (0.51)	0.018 (0.46)	(5.08)	0.010 (0.25)	2000V	1500pF	1500pF	0.012µF													
	,	(3 3)		(3 - 2)	3000V	560pF	560pF	3900pF													
	0.070 (0.05)			0.000 (0.54)	500V	0.012µF	0.012µF	0.25μF													
0700	0.270 (6.85) ±	0.230 (5.84)	0.200	0.200	0.200	0.200	0.230 (5.84) 0.200	0.020 (0.51) ±	1000V	5600pF	5600pF	0.027μF									
2720	0.020 (0.51)	max.	(5.08)	0.010 (0.25)	2000V	1500pF	1500pF	6800pF													
	()			()	3000V	560pF	560pF	3300pF													

^{***} NHT Max (T) equals Max (W)

PLEASE CONTACT FACTORY FOR OTHER SIZES AND VOLTAGES MANY OPTIONS ARE AVAILABLE

For sizes above 1812 Presidio recommends the chips be leaded (see "How to Order" on Page 10). During a thermal cycle, the leads help absorb the mechanical stress created by the CTE difference between the ceramic chip and the board.

^{**} WVDC = Working Voltage Direct Current

HIGH TEMPERATURE SMPS STACKED CAPACITORS (HTS)

Consult Factory for Requirements Above 250°C

GENERAL RECOMMENDATIONS FOR SOLDERING CERAMIC STACKED CAPACITORS

In general, Presidio recommends against hand soldering for this type of large ceramic device. However, if the customer cannot avoid hand soldering, it should be done with care to avoid thermally cracking the parts. Soldering of these parts to the circuit board, if done in a careless manner, can be the most likely source of reliability problems.

Preheating and Mounting. For reflow, the parts should be preheated to within 50°C to 60°C to the reflow temperature, or as close as is practical. A convection-style reflow oven with nitrogen is ideal. During reflow, the heat-up and cool-down rates (dT/dt) should be kept well under 4°C/sec, and preferably under 2°C/sec.

Hand Soldering. If hand soldering must be used, preheat the parts as recommended above. A hot-air gun is an ideal tool for this procedure. When hand soldering, avoid excessive heat, and keep the tip of the solder iron as far away from the ceramic as possible. As an example, for through-hole leaded parts, solder from the backside of the board. This will minimize the risk of thermally cracking the ceramic. After soldering, allow the parts to air cool to room temperature before cleaning.

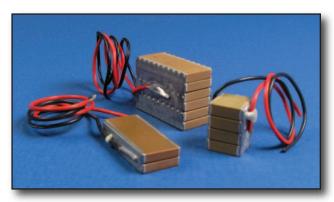
Leads. The leads do not need to be pre-tinned as they have already been tinned with Sn63 as part of our process. For special code 'Y', leads are coated with silver.

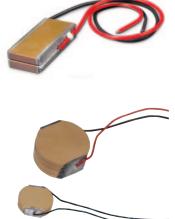
In addition to the above, the following rules apply:

- 1. Never dip the stacked capacitors into a solder pot (for pre-tinning, for example).
- 2. Never allow an operator to touch-up a solder joint with a soldering iron.

IN ACCORDANCE WITH MIL-PRF-49470

The following precaution should be followed to prevent THERMAL SHOCK

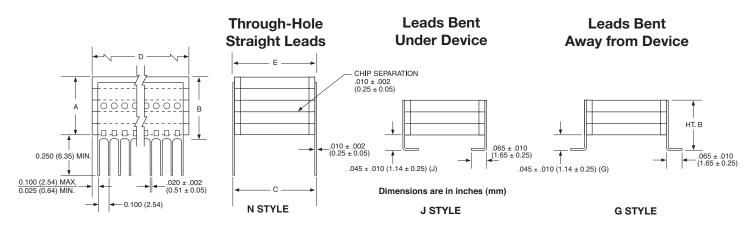

"Precautionary Note: Capacitors covered by this specification sheet are very susceptible to thermal shock damage due their large ceramic mass. Temperature profiles used should provide adequate temperature rise and cool-down time to prevent damage from thermal shock."

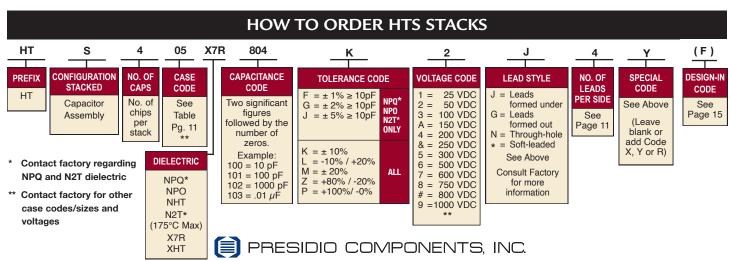

SPECIAL STACKS AND LEADS

Presidio can tailor the lead configuration to your needs. We also offer special shapes that optimize the volume available (semi-round and round shapes). Other shapes are also available.

HIGH TEMPERATURE SMPS STACKED CAPACITORS (HTS)

Consult Factory for Requirements Above 250°C


SOLDERING AND LEAD COATING RECOMMENDATIONS


Special	Description	Attachment Method Recommended Max. Temp.	RoHS Status
Blank	Sn63 / HMP Compatible	Sn63 or HMP (150°C / 200°C)	Not Compliant
x	Sn96 / HMP Compatible	Sn96 or HMP (180°C / 250°C)	Compliant with Exemption 7A.
Y	Sn96 / HMP Compatible	Sn96 or HMP (180°C / 250°C)	Not Compliant
R	Sn96	Sn96 (180°C) DO NOT USE HMP	Compliant (Lead Free)

NON-MAGNETIC STACKS AVAILABLE (RoHS 200°C - Non-RoHS 250°C)

SURFACE MOUNT STACKS

PRESIDIO LEAD STYLES AND DIMENSIONS

HIGH TEMPERATURE SMPS STACKED CAPACITORS (HTS)

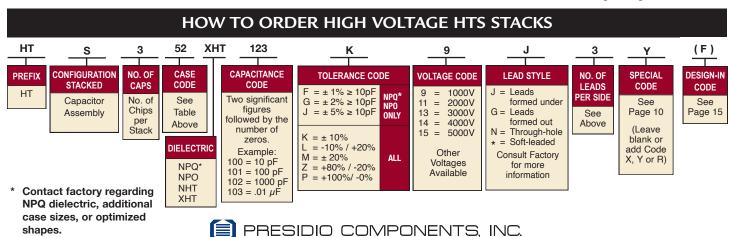
X7R, XHT, and NPO DIELECTRIC

Consult Factory for Requirements Above 250°C

		PR	ESIDIC	CASE	SIZE (I	Maxim	num Capacitance μF)						"B"	No. of
Case Code*		08			01			05			13		Ht. Max.	Caps per
Dielectric	X7R	XHT	NPO	X7R	XHT	NPO	X7R	XHT	NPO	X7R	XHT	NPO	inch (mm)	Stack
	1.4	.82	.036	2.5	1.5	.065	7.0	4.0	.16	20	14	.50	.150 (3.81)	1
WVDC**	2.8	1.6	.072	5.0	3.0	.13	14	8.0	.32	40	28	1.0	.200 (5.08)	2
	4.2	2.4	.11	7.5	4.5	.19	21	12	.48	60	42	1.5	.275 (6.99)	3
25V (Voltage	_	-	-	10	6.0	.26	28	16	.64	80	56	2.0	.350 (8.89)	4
Code = 1)	_	-	-	12	7.5	.32	35	20	.80	100	70	2.5	.425 (10.80)	5
	_	-	-	15	9.0	.39	42	24	.96	120	84	3.0	.500 (12.70)	6
	1.2	.6	.030	2.1	1.0	.055	5.6	3.0	.14	18	10	.40	.150 (3.81)	1
WVDC**	2.4	1.2	.060	4.2	2.0	.11	11	6.0	.28	36	20	.80	.220 (5.59)	2
	3.6	1.8	.090	6.3	3.0	.16	17	9.0	.42	54	30	1.2	.310 (7.87)	3
50V (Voltage	_	-	-	8.4	4.0	.22	22	12	.56	72	40	1.6	.400 (10.16)	4
Code = 2)	-	-	-	10	5.0	.27	28	15	.70	90	50	2.0	.490 (12.45)	5
	_	-	-	12	6.0	.33	33	18	.84	110	60	2.4	.580 (14.73)	6
	.75	.34	.020	1.4	.70	.040	4.0	1.8	.10	12	6.0	.30	.160 (4.06)	1
WVDC**	1.5	.68	.040	2.8	1.4	.080	8.0	3.6	.20	24	12	.60	.280 (7.11)	2
	_	-	-	4.2	2.1	.12	12	5.4	.30	36	18	.90	.400 (10.16)	3
100V (Voltage	_	-	-	5.6	2.8	.16	16	7.2	.40	48	24	1.2	.520 (13.21)	4
Code = 3)	-	-	-	7.0	3.5	.20	20	9.0	.50	60	30	1.5	.640 (16.26)	5
	_	-	-	_	_	-	-	-	-	72	36	1.8	.760 (19.30)	6
	.22	.14	.012	.42	.25	.022	1.2	.70	.056	3.5	2.2	.18	.160 (4.06)	1
WVDC**	.44	.28	.024	.84	.50	.044	2.4	1.4	.11	7.0	4.4	.36	.280 (7.11)	2
	_	-	-	1.2	.75	.066	3.6	2.1	.17	10	6.6	.54	.400 (10.16)	3
200V (Voltage	_	-	-	1.7	1.0	.088	4.8	2.8	.22	14	8.8	.72	.520 (13.21)	4
Code = 4)	_	-	-	2.1	1.2	.11	6.0	3.5	.28	17	11	.90	.640 (16.26)	5
	_	-	-	_	-	-	-	-	-	21	13	1.1	.760 (19.30)	6
	.11	.07	.006	.19	.13	.011	.55	.39	.028	1.6	1.2	.080	.160 (4.06)	1
WVDC**	.22	.14	.012	.38	.26	.022	1.1	.75	.056	3.2	2.4	.16	.280 (7.11)	2
	-	-	-	.57	.39	.033	1.6	1.1	.084	4.8	3.6	.24	.400 (10.16)	3
500V (Voltage	-	-	-	.76	.52	.044	2.2	1.5	.11	6.4	4.8	.32	.520 (13.21)	4
Code = 6)	-	-	-	.95	.65	.055	2.7	1.9	.14	8.0	6.0	.40	.640 (16.26)	5
	-	-	-	_	-	-	-	-	-	9.6	7.2	.48	.760 (19.30)	6
	0	.215 (5.4	6)	0	.275 (6.99)	C	.400 (10.	16)	0.	450 (11.4	3)	C ± .025	(.64)
Dimensions inch (mm)	0	.215 (5.4	6)	0	.275 (6.99)	C	.425 (10.	80)	1.	075 (27.3	1)	D (Max) W	/idth
inicir (ililii)	0	.240 (6.1	0)	0	.300 (7.62)	C	.440 (11.	18)	0.	500 (12.7	O)	E (Max) Le	ength
Leads Per Side		2			3			4			10			
Chip Size		2018			2627			3941			4399			

Contact factory regarding NPQ dielectric, additional case sizes, or optimized shapes.

** WVDC = Working Voltage Direct Current


HIGH TEMPERATURE HIGH VOLTAGE STACKED CAPACITORS (HTS)

XHT and NPO DIELECTRIC

Consult Factory for Requirements Above 250°C

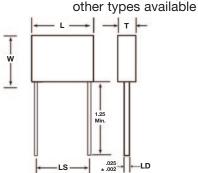
		Р	RESID	OIO CA	SE SI	ZE (Ma	aximu	т Сар	acitar	nce μF)				"B" Ht.	No. of Caps
Case Code*	5	2	5	3	5	i4	5	5	5	i6	5	7	5	8	п. Max.	per
Dielectric	XHT	NPO	XHT	NPO	XHT	NPO	XHT	NPO	XHT	NPO	XHT	NPO	XHT	NPO	inch (mm)	Stack
WVDC**	.040	.0036	.080	.0075	.16	.014	.25	.022	.35	.030	.38	.033	.70	.060	.200 (5.08)	1
40001/	.080	.0072	.16	.015	.32	.028	.50	.044	.70	.060	.76	.066	1.4	.12	.350 (8.89)	2
1000V (Voltage	.12	.011	.24	.022	.48	.042	.75	.066	.10	.090	1.1	.10	2.1	.18	.500 (12.70)	3
Code = 9)	.16	.014	.32	.030	.64	.056	1.0	.088	.14	.12	1.5	.13	2.8	.24	.650 (16.51)	4
WVDC**	.0080	.00075	.019	.0017	.035	.0032	.055	.0050	.080	.0070	.090	.0082	.17	.015	.200 (5.08)	1
	.016	.0015	.038	.0034	.070	.0064	.11	.010	.16	.014	.18	.016	.34	.030	.350 (8.89)	2
2000V (Voltage	.024	.0022	.057	.0051	.10	.0096	.16	.015	.24	.021	.27	.024	.51	.045	.500 (12.70)	3
Code = 11)	.032	.0030	.076	.0068	.14	.013	.22	.020	.32	.028	.36	.033	.68	.060	.650 (16.51)	4
WVDC**	-	-	.0070	.00065	.014	.0013	.022	.0021	.033	.0030	.039	.0035	.070	.0065	.200 (5.08)	1
	_	-	.014	.0013	.028	.0026	.044	.0042	.066	.0060	.078	.0070	.14	.013	.350 (8.89)	2
3000V (Voltage	_	_	.021	.0019	.042	.0039	.066	.0063	.10	.0090	.11	.010	.21	.019	.500 (12.70)	3
Code = 13)	-	-	.028	.0026	.056	0052	.088	.0084	.13	.012	.15	.014	.28	.026	.650 (16.51)	4
WVDC**	_	-	_	-	.007	.00060	.012	.0010	.017	.0015	.020	.0018	.039	.0035	.200 (5.08)	1
	-	-	_	-	.014	.0012	.024	.0020	.034	.0030	.040	.0036	.078	.0070	.350 (8.89)	2
4000V (Voltage	_	-	_	_	.021	.0018	.036	.0030	.051	.0045	.060	.0054	.11	.010	.500 (12.70)	3
Code = 14)	-	-	_	-	.028	.0024	.048	.0040	.068	.0060	.080	.0072	.15	.014	.650 (16.51)	4
WVDC**	-		_	-	.0040	.00042	.0065	.00070	.0090	.0010	.011	.012	.022	.0024	.200 (5.08)	1
	_	-	_	_	.0080	.00084	.013	.0014	.018	.0020	.022	.024	.044	.0048	.350 (8.89)	2
5000V (Voltage	-	-	_	_	.012	.0012	.019	.0021	.027	.0030	.033	.036	.066	.0072	.500 (12.70)	3
Code = 15)	-	-	_	-	.016	.0016	.026	.0028	.036	.0040	.044	.048	.088	.0096	.650 (16.51)	4
	0.300	(7.62)	0.415	(10.54)	0.500	(12.70)	0.600	(15.24)	0.700	(17.78)	0.975	(24.77)	1.375	(34.93)	C ± .025 (0.64)
Dimensions inch (mm)	0.260	(6.60)	0.350	(8.89)	0.460	(11.68)	0.560	(14.22)	0.660	(16.76)	0.520	(13.21)	0.670	(17.02)	D (Max) V	/idth
mon (mm)	0.325	(8.26)	0.440	(11.18)	0.525	(13.34)	0.625	(15.88)	0.725	(18.42)	1.000	(25.40)	1.400	(35.56)	E (Max) Le	ength
Leads Per Side	;	3	4	4		4		5		6	!	5	(6		
Chip Size	28	24	39	33	48	344	58	54	68	864	96	50	13	565		

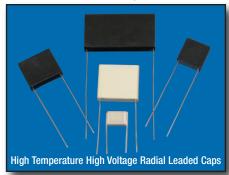
** WVDC = Working Voltage Direct Current

HIGH TEMPERATURE HIGH VOLTAGE RADIAL LEADED CAPACITORS (RT)

X7R, XHT and NPO DIELECTRIC

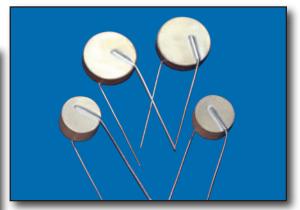
Consult Factory for Requirements Above 250°C


SPECIFICATIONS


MECHANICAL:

Case: DAP up to 220°C Code B
PEEK up to 240°C Code P

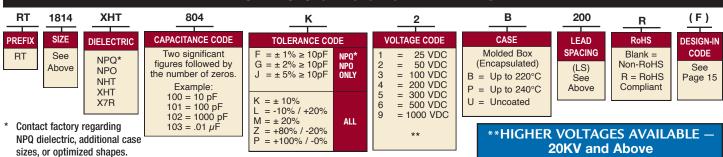
Uncoated up to 250°C Code U


Leads: Solder coated copper clad steel is standard;

ALSO AVAILABLE

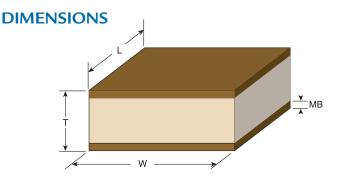
High Temperature High Voltage Disc Capacitors
Call Factory for More Information

DIMENSIONS (Inches)


SIZE	L (Max.)	W (Max.)	T (Max.)	LS (±.032)	LD (±.002)
RT1814	0.300	0.200	0.200	0.200	0.025
RT1824	0.300	0.300	0.200	0.200	0.025
RT2225	0.350	0.300	0.200	0.250	0.025
RT2824	0.400	0.300	0.200	0.300	0.025
RT3933	0.500	0.400	0.200	0.400	0.025
RT4844	0.600	0.500	0.200	0.500	0.025
RT5854	0.700	0.600	0.200	0.600	0.025
RT6864	0.800	0.700	0.200	0.700	0.025
RT9650	1.100	0.600	0.200	0.980	0.025
RT13565	1.450	0.720	0.200	1.375	0.025

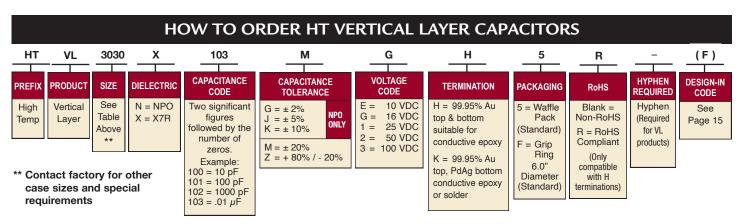
MAXIMUM CAPACITANCE (uF)

** WVDC = Working Voltage Direct Current


			<u> </u>									
WVDC**	2	5 V	50	O V	10	OV	20	OV	50	0 V	100	V 00
SIZE	X7R	NPO	X7R	NPO	X7R	NPO	XHT	NPO	XHT	NPO	XHT	NPO
RT1814	.47	.022	.33	.018	.22	.012	.10	.0075	.075	.0035	.012	.0010
RT1824	.82	.045	.25	.033	.50	.024	.20	.014	.15	.0068	.024	.0020
RT2225	1.2	.056	1.0	.047	.60	.033	.25	.020	.20	.0090	.032	.0027
RT2824	1.5	.070	1.2	.056	.85	.040	.33	.022	.25	.011	.040	.0036
RT3933	2.7	.16	2.5	.12	1.5	.085	.60	.050	.50	.024	.080	.0075
RT4844	5.0	.18	4.0	.20	2.0	.14	1.2	.082	.82	.039	.16	.014
RT5854	7.8	.27	6.8	.30	4.5	.21	1.8	.12	1.2	.060	.25	.022
RT6864	12	.60	9.5	.44	6.0	.31	2.5	.18	1.8	.085	.35	.030
RT9650	15	.68	10	.47	6.8	.34	2.7	.20	2.0	.095	.39	.033
RT13565	-	-	-	-	-	-	4.7	.36	3.9	.17	.70	.060

HOW TO ORDER RT RADIAL LEADS

HIGH TEMPERATURE WIRE BONDABLE VERTICAL LAYER CAPACITORS (HTVL) FOR POWER APPLICATIONS


Consult Factory to Discuss Your Application

For RF High Temperature
Applications Please See
Our RF/MW Catalog 6100 and
Consult the Factory

AVAILABLE CAPACITANCE VALUES

SIZE**	L Inches	W Inches	Thickness Max (T)	Metalization Band (M.B.)	Working Voltage	DIELE((Maximum C	CTRIC* Capacitance)	NOTES	
	(mm)	(mm)	Inches (mm)	Inches (mm)	WVDC**	NPO	X7R		
					10V		22,000 pF		
	0.030	0.030	0.030 (0.762)			16V		10,000 pF	
3030	(0.762) ±	(0.762) ±				0.030 (0.762)	0.005 (0.127)	25V	
	0.003 (0.076)	0.003 (0.076)	,		50V		3,000 pF		
					100V		1,200 pF	Contact	
					10V		47,000 pF	Presidio	
	0.040 (1.016)	0.040 (1.016)	0.040 (1.016)		16V	Contact	30,000 pF	to Discuss	
4040	± 0.004	± 0.004		0.005 (0.127)	0.005 (0.127) 25V Presidio	Presidio	20,000 pF	Your Voltage and	
	(0.102)	(0.102)			50V		8,200 pF	Derating	
					100V		4,700 pF	Requirements	
	0.042	0.083			16V		68,000 pF		
4080	(1.067)	(2.108)	0.040	0.005 (0.127)	25V		30,000 pF		
4000	± 0.004 (0.102)	0.004	± 0.004	(1.016)	3.000 (0.127)	50V		15,000 pF	
	(0.102) (0.102)				100V		8,200 pF		

PRESIDIO COMPONENTS DESIGN-IN CODES

A WORD TO DESIGN ENGINEERS

After the design work is done, outsourcing manufacturing on a global basis is a management option. At Presidio Components, we are striving for complete customer satisfaction which includes "after" service for all of our products.

We added a "Design-In" locator code for quick traceability, if needed. Please select your location from the table below and add the appropriate code at the end of the part number. If you need assistance, please give us a call at +1-858-578-9390 or email info@presidiocomponents.com.

UNITED STATES

Wisconsin, East

Wisconsin, West

Wyoming

(G)

(N)

Mississippi

Missouri

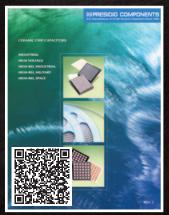
OUTSIDE THE UNITED STATES

USA	Code	Montana	(A)	Americas	Code	Europe	Code
Alabama	(G)	USA	Code	Canada		Austria	
Alaska	(P)	Nebraska	(P)		(R)		(3)
Arizona	(D)	Nevada, North	(B)	Mexico	(R)	Belgium	(1)
Arkansas	- (P)	Nevada, South	(C)	Caribbean	(R)	Denmark	(5)
California, North	(B)	New Hampshire	(L)	Central America	(R)	Finland	(5)
California, South	(C)	New Jersey	(J)	South America	(R)	France	(2)
Colorado	(E)	New Mexico	(D)	Pacific Rim		Germany	(3)
Connecticut	(L)	New York, Metro	(J)	Australia	(0)	Ireland	(6)
Delaware	(1)	New York, Upstate	(K)		(S)	Italy	(4)
District of Columbia	(H)	North Carolina	(G)	China	(T)	Luxembourg	(1)
Florida	(G)	North Dakota	(0)	Japan	(U)	Netherlands	(1)
Georgia	(G)	Ohio	(M)	Korea, South	(V)	Norway	(5)
Hawaii	(P)	Oklahoma	(P)	Malaysia	(W)	Sweden	(5)
Idaho	(A)	Oregon	(A)	Singapore	(X)	Switzerland	(3)
Illinois	(N)	Pennsylvania	(1)	Other Pacific Rim Count	ries (Y)	United Kingdom	(6)
Indiana	(M)	Rhode Island	(L)			Other European Countries	(7)
lowa	(0)	South Carolina	(G)			OIL	1
Kansas	(P)	South Dakota	(0)			Other	
Kentucky	(M)	Tennessee	(G)			India	(Z)
Louisiana	(P)	Texas	(F)			Israel	(8)
Maine	(L)	Utah	(E)			Rest of World	(9)
Maryland	(H)	Vermont	(L)				
Massachusetts		Virginia	(H)				7
	(L)	Washington	(A)				
Michigan Minnesota	(N)	West Virginia	(P)	PART	NUMBE	R EXAMPLE:	
winnesota	(O)		(-)				

HT0805XHT473K1Q5R(F)

Add Design-In Code inside the parentheses at the end of the Presidio part number as shown above.

(N)


(0)

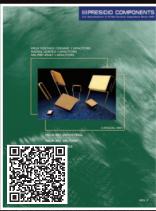
(E)

PRESIDIO PRODUCT LINES

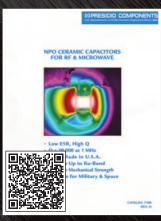
100% U.S. Made · 100% U.S. Owned

Click Catalog Cover or Scan QR Code to Visit Product Page on Website

SURFACE MOUNT CERAMIC CHIP CAPACITORS


HIGH RELIABILITY EXTENDED RANGE CHIPS FOR SPACE

CERAMIC STACKED CAPACITORS FOR SMPS


HIGH TEMPERATURE **CERAMIC CAPACITORS**

HIGH VOLTAGE RADIAL **LEADED & MIL-PRF-49467 CERAMIC CAPACITORS**

CERAMIC CAPACITORS FOR RF ENGINEERS

HIGH Q NPO **CERAMIC CAPACITORS** FOR RF & MICROWAVE

PULSE DISCHARGE CERAMIC CAPACITORS

Information in this document is subject to change without notice.

PRESIDIO COMPONENTS, INC.

CATALOG 3500 REV. P SEPTEMBER 2024